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ABSTRACT 

We extend our discussion of the infinite series of 

local conservation laws in superconformal two dimensional 

models to the CP(N-l), and O(N)xO(N) and SU(N)xSU(N) 

principal chiral models. The simple argument which was so 

successful in proving that these laws survive quantization 

for the bosonic O(N) a-model, principal chiral models and 

supersymmetric O(N) a-model does not resolve the issue here. 

Some new conservation laws are also considered. 
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1. Introduction 
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This paper is a continuation of our work on local 

conservation laws and their quantization in superconformal 

models. In a previous paper 1 we extended Noether's theorem 

and the Belinfante improvement procedure to superspace in 

order to construct the supercurrent. Given the 

supercurrent, it was easy to construct an infinite series of 

local construction laws. Finally, we were able to prove via 

a simple argument that the dimension five conservation 

survives quantization fOK the supersymmetric non-linear 

a-model just as it does fOK the Ordinary non-linear 

u-model. 2 Here we consider the supersymmetric versions of 

the other models studied by Goldschmidt and Witten in 

Ref. 2, namely the CP(N-1) model, and the O(N)xO(N) and 

SU(N)xSU(N) chiral models. We find that the simple argument 

is sufficient in neither case. It is extremely unlikely, as 

we will explain below, that the conservation law doesn't 

hold in the CP(N-1) model. Whether the imposition of the 

extended supersymmetry of that model is sufficient to prove 

the conservation law is under investigation. On the other 

hand, less is known about the chiral models and these 

results should prompt further study of their dynamics. 

Let us briefly review the motivation and background for 

this work. There are three different lines of development 

which are relevant. The first is the discovery of theories 
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with a infinite number of conservation laws. The second is 

the study of supersymmetric two dimensional models, and the 

third is the construction of exact S-matrices fOK tW0 

dimensional field theories. 

The first field began in 1976 when Pohlmeyer3 showed 

the close relationship of the O(3) a-model to the integrable 

sine-Gordon theory. An infinite series of local 

conservation laws was discovered. Shortly thereafter, 

Liischer and Pohlmeyer 4 discovered an infinite series of 

classically conserved non-local charges. Liischer then 

showed that the non-local charges are also conserved in the 

quantum theory. 5 The inverse scattering formalism was 

applied to a variety of field theories. 6,7 

FeKKaKa initiated the study of supersymmetric 

two-dimensional gauge theories in 1975.8 The supersymmetric 

9 a-model was formulated by DiVecchia and Ferrara, and by 

Witten.lO Soon thereafter Cremmer and Scherk formulated the 

11 supersymmetric CP(N-1) model. 

The early work on factorized S-matrices was carried out 

by the Zamolodchikovs and by Berg, Karowski, Thun, TKUOng 

and Weiss. S-matrices were found fOK the sine-Gordon,12 

massive Thirring, l3 O(N) .,14 and chiral invariant SU(N) 

ThiKKing 15 models. 

At approximately this point, infinite series of 

conservation laws16 and exact S-matrices17 for 

supersymmetric theories began to make an appearance. The 
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inverse scattering formalism was also applied to 

supersymmetric models.18'1g Eichenherr and FOKgeK2' showed 

that all classical non-linear a-models on symmetric spaces 

have the dual symmetry of Pohlmeyer. 3 Aspects of the quantum 

theories were studied by Pisarski. 21 Non-loca122-24 and 

loca125 conservation laws in the classical supersymmetric 

a-models were constructed. 

This brief outline of earlier work should suffice to 

provide a context for this work. The rest of the paper is 

organized as follows. Section II is devoted to the CP(N-1) 

models. The quantization of several conservation laws is 

considered. Section III deals with the O(N)xO(N) - and 

SU(N)xSU(N) models. A new (as far as we know) series of 

classical conservation laws is derived. FOK the SU(N)xSU(N) 

models the second non-trivial one is shown to survive 

quantization. Our summary and conclusions are contained in 

the final section. 

II. The CP(N-1) model 

In this section we consider the quantization of the 

local conservation laws fOK the supersymmetric CP(N-1) 

model. The purely bosonic model was constructed by 

Eichenherr" and by Go10 and Perelomov. 27 The l/N expansion 

was studied by D'Adda, DiVecchia and Liischer,28 and by 

Witten.2g Such an analysis does not lead one to believe the 

model is soluble. There are both loca12'30 and 
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non-loca120'31 conservation laws at the classical level; 

however, recently Abdalla, Abdalla and Gomes32 have shown 

that the non-local conservation laws are spoiled by 

anomalies at the quantum level. An analysis of the local 

conservation laws also indicates that there may be anomalies 

there. 2 

The supersymmetric CP(N-1) model was first constructed 

by Cremmer and Scherk.33 It was studied in the context of 

the l/N expansion by d'Adda, DiVecchia and Liischer.34 Our 

notation is somewhat different from that of the latter group 

so we will repeat a number of their formulae. 

The model is constructed in terms of a complex 

superfield which transforms as a vector under an SU(N) 

internal symmetry. Under an Abelian gauge transformation, 

@+l$‘=$e-‘*, (1) 

where A is a real scalar superfield. As usual we wish to 

define a covariant derivative. Since the theory is 

supersymmetric, we have spinor derivatives, so we introduce 

a MajOKana spinor superfield Aa. The supercovariant 

derivative acting on $ and $I* is defined by Eqs. (2) and 

(3). 

ga$*=(Da-iA,)+* . 

(2) 

(3) 
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Under a gauge transformation, 

A+A'=A+Dh. (4) 

The Lagrangian is invariant under supersymmetry, the 

SU (NJ internal symmetry and gauge transformations. A 

Lagrange multiplier field is included to impose the 

constraint $*.+=l. 

s = jd2xdgde@T * 534 + CL@* * $'-11) s (5) 

In detail, 

07 l 01$ = o~*.D~-i~*.AD~+iD~*A.~+~~*.~. (6) 

No dynamics is included for the gauge field so we may use 

the equations of motion to express A in terms of $ and $*. 

A = ; r$,* . ;,$ (7) 

taking the constraint +**$=l into account. Finally, the 

equation of motion for $I is 

iz@$ = -@tJ*9+)+. (8) 
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Using the results of 1 our previous paper, it is a 

simple matter to construct the Belinfante improved 

supercurrent. Working in light cone coordinates, Eq. (3.21) 

of Ref. 1 states 

D2@ + El+* * ad/ 

aD,$ 
+ * 

I 
(9) 

Using the Lagrangian implied by Eqs. (5) and (6), we see 

that the third term, which is the improvement term, 

vanishes. {Although the supercurrent does not look gauge 

covariant because of the appearance of a+$ rather than the 

gauge covariant derivative defined in Eq. (13), it is easy 

to see using Eqs. (12) and (13) that changing the ordinary 

derivative to a covariant derivative doesn't change V+2. 

V +2 = ~2~*'v+@+v+~**9120 . (10) 

Once again recalling Ref. 1, superconformal invariance 

implies Vs2 = V+l = 0, so space time translation invariance, 

E Vu=0 becomes simply DlV+2 = D2Vsl = 0. The non-vanishing 

components of the energy-momentum tensor may be expressed as 

derivatives of the supercurrent, i.e., T++=-2iJ2 D2V+2, 

T -- =-2i/2 DIVvl. So, Dl T++ = D2 T-w = 0. Thus follows the 

infinite series of conservation laws whose quantization we 
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wish to study. 

DIIV+* (T++l “I = 0. (11) 

We wil ,l study the quantization of Eq. (10) for n=l by 

constructing all the possible counter terms which might 

appear on the r.h.s. and all the possible total derivative 

operators in terms of which we would like to reexpress the 

counterterms. If the derivatives span the set of 

counterterms then we say the conservation law survives 

quantization because no matter which counterterms appear the 

quantum equation is in the form of a conservation law. 

In order to construct the counterterms we start off by 

constructing SU(N) singlet operators linear in e and $*. The 

only dimensionless operator is the identity since 1$12=l. 

Gauge invariance makes the dimension l/2 operators vanish. 

$**Q+a~ = $**(Da+iAa)$ = @**(Da-[@**Da$l)$ = 0, (12) 

For dimension one operators we would like to construct the 

ordinary (i.e. non-spinor) covariant derivative. We denote 

it by V 
P 

vu@ = (au- (e**aM+) ) $. (13) 

Obviously, the dimension one operators involving V vanish. 

Nonvanishing operators may be formed using two spinorial 

derivatives. They are 
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ra+*sw 
&*-Y5a 
G&$**Y%~ . (14) 

The last operator is the conserved bosonic current required 

by the extended supersymmetry of this mode1.34 Next we 

construct the dimension 3/2 bilinears. The twist zero 

operators are listed first.(Twist is defined to be dimension 

minus light cone weight , where light cone weight is +l for 

a + component, -1 for a - component, + l/2 for a spinorial 2 

component, and - l/2 for a spinorial 1 component.) 

But it is easy to see that the first two operators may be 

expressed in terms of the last two. As ($'*'02 6) = 0, 

a+($*9J,$) = (v+~**~2~)+(~*.v+~2~) = 0. 

For a superconformally invariant theory, the supercurrent, 

V 
w' 

obeys Dl V+2=0. It is easy to show 
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Dl(V+@*‘9J2$) = 0 

Dl(02@*‘V+$) = 0 . 

We expected one conserved current corresponding to the sum 

of the two above equations from invariance under 

supersymmetry. The difference is conserved as a consequence 

of the invariance under extended sypersymmetry. 

There are two twist one operators obtained from the 

above by replacing g2 with gl. In Table 1 we list the 

bilinears needed to construct the counterterms and total 

divergence operators required below. The final column of 

the table gives a compact notation for the operators. Ones 

denoted S(A) are symmetric (antisymmetric) under the 

interchange of $ and $I*. A comma separates the two sets of 

derivatives which operate on @* and $I. 

Just as we did for the u-model, we consider the 

spinorial conservation law related to a-(T+f)=O, i.e. 

Dl(V+2T++)=0. We list all the possible counterterms to this 

statement. In the case of the c-model, there were eight 

possible counterterms. In the CP(N-1) model, there are 24. 

They are listed in Table 2. 

For the supersymmetric u-model, it was possible to 

reexpress the counterterms as derivatives of other 

operators. For the supersymmetric CP(N-1) models this isn't 

possible. To show this we list in Table 3 all the dimension 
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7/2 twist zero or one operators. There are 22. 

A linear combination of S+,+S+,2 and S+2,2 S+,2 IS 

V+2T++, the operator whose conservation we wish to show. 

Therefore, there are clearly not enought divergence 

operators to span the space of counterterm operators. Thus, 

we are not able to prove, simply on the basis of the 

supersymmetry that there will be a dimension five 

conservation law which is true on the quantum level. It is 

certainly likely that such a law exists for the 

supersymmetric CP(N-1) model since the model has an exact 

S-matrix35 and there is no anomaly in the first non-trivial 

non-local current. 36 We have not attempted to use the 

extended sypersymmetry of the model in the above discussion. 

Whether this additional symmetry is sufficient to show that 

the conservation law holds at the quantum level is under 

investigation. On the other hand, it may be possible to 

shown via direct calculation that not all operators which 

may mix with D1(Vi2T++) under renormalization actually do 

so. Supersymmetry usually improves the ultraviolet 

convergence properties of a theory, so this may be likely. 

Such a situation would be reminicent of the vanishing of the 

t3 function to three loop order in N=4 supersymmetry. 

Related to the issue of extended supersymmetry, we wish 

to consider the conservation law one gets by substituting 

the antisymmetric current for the usual supercurrent in the 

above conservation law. It is easy to show that the 
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counting works out identically. 

III. The O(N)xO(N) and SU(N)xSU(N) Chiral Models 

Let us take up the case of the supersymmetric chiral 

models.1' The action is given by 

S=ld2xdFd8 Tr(Ijg-lDg). (15) 

There is also the constraint that g is an element of O(N) or 

SU(N). The equation of motion is 

DDg = -iig Dg-lg. (16) 

In this model, operators which are singlets under the 

internal symmetry will be traces. Operators may also be 

classified according to their property under the discrete 

-1 
symmetries g+gT, g+g . In O(N), this is the same symmetry 

so an operator will vanish if it transforms oppositely under 

the two symmetries. 

As in the other models we've considered, the dimension 

l/2 operators vanish, i.e. Tr (4 
-1 Dag)=Tr(Dag-lg)=O. This 

immediately implies that for higher dimension operators if 

all derivative 
-1 

appear on one of g or g , the operator may 

be reexpressed in terms of operators with derivatives on 

bothg andg -1 . 

Considering operators of dimension 1, 

Tr (4 -lapg) =Tr (a,g-lg) =o. In fact, the only nonvanishing 

operator is Tr(Dlg-lD2g). For instance, 
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Tr (D2gm1D2g) = -Tr (g-lD,g gm1D2g) = -Tr A2 = 0, (17) 

where A is a Grassman matrix, so this vanishes. We note 

that Tr(Dlgel D2g) is even under both discrete symmetries. 

For dimension 3/2, we may have one ordinary derivative 

and one spinor derivative, or three spinor derivatives. In 

the first case we have Tr(aug -lDag). This is even under both 

discrete symmetries. In the second case, the twist zero and 

one operators are Tr(g -1 
D2P2g 

-1 D2g) and Tr(g -1 
D2gD2g-1D1g) r 

respectively. These operators are odd under the discrete 

symmetries. As before it is easy to see what the 

supercurrent must be. 

v+2 
= Tr (aug-1D2g) I (ia) 

to within a numerical factor. It is easy to verify that 

DlVi2=0. More interesting is the fact that 

Dl Tr (g 
-1 D2gD2g-'D,g)=O. This is analogous to the CP(N-1) 

mode134 where there were two conserved dimension 3/2 

currents; however, here we can't see how there can be a 

conserved bosonic current which is a dimension one 

superfield. 

It is also interesting to note at this point that the 

last conservation law is the first in a series of 

classical conservation laws. It is easy to see that for all 

odd m, 
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(19) 

Recall that in the non-supersymmetric model7 

3-n (g -la+g)” = 0. 

Eq. (19) is the supersymmetric analog. Table 4 contains 

many of the traces relevant to the study of our conservation 

law. The parity of each operator under the two discrete 

symmetries is listed and operators which vanish in O(N) 

because of these symmetries are indicated with an x. For 

dimension 4 we have only listed twist one operators even 

under both discrete symmetries as these are the ones 

relevant to the conservation law we consider. The only 

dimension three operators required are twist zero and even 

under the symmetries, since there is only one dimension one 

operator and it is even and twist one. 

Now we construct the anomalies which may spoil the 

classical conservation law D1(Vi2T++)=0. There are 15 

dimension 4 operators listed in Table 4. In addition, we 

have the following: 
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Tr (D2g -%~D2g+D2ga:D2g -l) Tr (Dlgs1D2g) 

Tr(a+g-1a~g+a+ga~g-1)Tr(Dlg-1D2g) 

Tr (ai4 ~1a+~2g+a+ga+~2g~1~Tr~a+g~1Dl~~ 

2 -1 Tr (a+g D2g+a~gD2g-1)Tr(a+g-1Dlg) 

Tr (4 
-1 

D2gD2g 
-1 

a+D2g-W2g -1D2ga+D2g-1)Tr(g-1D2gD2g-1Dlg) 

Tr (4 
-1 

DlW2g 
-1 -1 

a+D2g-gD1g D2ga+D2g 
-1 

-1 -1 -1 -1 
+4 D2Wlg a+D2g-P2g Dlga+D2g ) Tr (gs1D2gD2gs1D29) 

Tr (D1g -1 
D2W2g -1a+g-D2g-1D2gDlg-1a+g)Tr(a+g-1D2g) 

Tr (s -1a+gD2g-1D2g)Tr(g-1a+gDlg-lD2g+g-1~+gD2g-1Dlg) 

There are a total of 26 operators which may appear as 

anomalies. To construct the total divergence operators, we 

need all dimension 7/2 twist zero or one even operators. 
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There are 15 dimension 7/2 operators listed in Table 2. The 

rest are: 

Tr (a+g -1a+D2g+a+ga+D2g-1)Tr(Dlg -lD2g) 

2 -1 
Tr (ai4 D2g+atgD2g-1)Tr(Dlg-1D2g) 

Tr (a+D,g 
-1 D2g+a+D2gD2g-1)Tr(a+g-1D2g) 

Tr (a+D2g 
-1 

D2g+a+D2g -1D2g)Tr(a+g-1Dlg) 

Tr (a+g -1a+g)Tr(a+g-1D2g) 

Tr (a+4 
-1 a+g)Tr(a+gwlDlg) 

Tr (g -1a+gD2g-1D2g)Tr(g-1D2gD2gS1D2g) 

Tr (g 
-1 a+gD2g-1D2g)Tr(g-1D2gD2g~1Dlg) 

Tr (aiD 
-1 Dlg+a+D2gDlg-1)Tr(a+g-1D2g) 

Tr (g -1a+gDlg-1D2g+g-1a+gD2g-1Dlg)Tr(g-1D2gD2g-1D2g) 
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There are a total of 25 divergence operators 

with the right quantum numbers. But, included in 

these 25 divergence operators is our original 

conservation law D1 (Vi2T++). In addition, classically, 

D1[Tr(g 
-1 

a +gD2gs1D2g) Tr (4 
-1 

D2gD2g-1D2g)l=o. We have already 

remarked that the derivative of the second trace vanishes. 

The first trace -1 -1 is proportional to D2Tr(g D2W2g D2g) 

since there is no other operator of dimension two with the 

right symmetry. So, the derivative of the first trace also 

vanishes as b+D,}=o. Therefore, we have two conservation 

laws each of which may have 26 operators appearing as 

anomalies. In general, we may expect to be able to take a 

linear combination so that only 25 operators appear. The 23 

other divergences identified above will not span the space 

of anomalies. Thus, the simple argument again fails to 

prove that there exists a quantum conservation law. It is 

possible, however, that such a law does exist. It would be 

interesting to carry out a perturbative calculation to see 

it fewer than 25 of the anomaly operators actually appear in 

some linear combination of the two classically conserved 

quantities. One might hope that the supersymmetry would so 

improve the short distance properties of the theory that 

fewer than the maximum number of anomalies would actually 

appear. The quantization of the non-local currents for the 

supersymmetric chiral models has recently been studied.40 

Zaikov claims there is no anomaly. Local' and non-loca13' 
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currents are known to survive quant ization in the purely 

bosonic models. No factorized S-matrix has been 

constructed. If the local conservation laws of the 

supersymmetric chiral models suffer from anomalies at the 

quantum level, it would be an interesting contrast to the 

CP(N-1) model. There, the bosonic model has an anomaly in 

the non-local current but the supersymmetric model does not. 

We have also examined several other conservation laws 

to see if they might survive quantization. Classically, 

there are three dimension 7/2 operators odd under both 

discrete symmetries whose derivatives vanish. 
- 

Dl ITr (4 
-1 

D2W2g 
-1 

D2g) Tr (a+D2g 
-1 

D2g+D2g 
-1 a+D2g-2iJ2a+g-1a+g)l=o 

Dl [Tr (a+gs1D2g) Tr (ge1a+gD2LI -1D2g)]=0 

DITr (g-1D2gD2g-1D24D24 
-1 

D2gD2g -lD2g)=0 

There are 28 possible anomalies, but only 22 divergences, so 

the simple argument cannot prove that this law survives 

quantization. The product of the two twist zero dimension 

3/2 operators has a vanishing derivative classically; 

however, at the quantum level, 16 operators may mix and 

there are only 10 divergences, hence quantum anomalies are 

possible. 
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Quite interesting is the quantization of Eq. (19) for 

n=5. The trace is odd under g+g -1 , but even under g+gT so 

it vanishes in O(N), but not in SU(N). Here we find that a 

conservation law does survive quantization. There are four 

possible anomalies. 

Tr (g 
-1 

DlgD29 -la~g-gDlg-lD2ga:9-l) +gvT 

Tr (g -1D1ga+g-1a+D2g-gDlg-1a+ga+D2g-~) +g+gT 

Tr (ge1D1gD2gm1D2gD2g -'a+g)+Tr($ D2gD2i1 D2P1i1 a+41 _ 

Tr (g -1 
D2Wlg 

-1 
D2W2g -'a+g) +Tr (g-1D24D24-1D1gD2g-1a,g) 

There are four divergence operators. 

DITr (g -1a+9a+9-1D29) 

D2Tr (9 -1a+C7a+g-1D1g) 

D2Tr (g 
-1 

D2W2g 
-1 

D2gD2&,s) 

D2Tr(g-1DlgD2g-12+D2g-gDlg-1D2g2+D2g -' 

-g -1D2gDlg-1a+D2g+gD2g-1D14a+D29-1) 
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This conservation law is quite analogous to one 

considered by Goldschmidt and Witten. 
2 They considered the 

quantization of Eq. (20) for n=3. In that case also, the 

trace vanishes in O(N) but not in SU(N) since it is odd 

-1 under g+g . In both cases it is the first conservation law 

in the series which has dimension higher than 

energy-momentum tensor conservation. 

Although the result of Ref. 2, that the classical 

conservation law is valid quantum mechanically, is correct, 

the argument is incorrect. The authors state that there are 

two counterterms and two divergences, however, both are 

double counted. The two divergences are 

Bl = at- (gttgi1-g;$3s) 

B2 = atTr (g-lgt4;'gs) . 

Using gil=-g-lgsg -1 
and gttg 

-1 -1 -1 
=-2gtgt -4gttI we see 

Tr (gttg;1 -g;igs) =2Tr (9-1gt9;19s) . Thus, Bl=2 B2. The two 

counterterms, Al=Tr (4;~t4s-4tttg,1) and 

A2=Tr (g-1gsg;1gtt-4g~1gtg~~+g-1gtg~1gtt-gg~1gsg~~), may 

similarly be shown to 

and making manifest 

be related by eliminating gttt from A1 

the antisymmetry under g+g -1 and the 

symmetry under g+gT. 
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IV. Summary and Conclusions 

Two dimensional integrable field theories are of 

interest to high energy physicists not only because they 

provide interesting examples of field theories, but because 

it is believed that quantum chromodynamics may in some sense 

be an integrable system. Certainly, it is not yet known 

whether this is the case. However, if the classical theory 

is shown to be integrable, precisely the type of question 

addressed here will be of utmost relevance. That is, given 

that a system is classically integrable is it still 

integrable at the quantum level? So far we only have an 

understanding of the answer to this question in specific 

examples, rather than a general approach. Let's review all 

that is known for the three types of models discussed 

here: non-linear u-model, CP(N-1) model, principal chiral 

model. 

For the non-linear u-model, the purely bosonic model 

has a factorized S-matrix, 14 
conserved non-local currents 5 

and conserved local currents. 2 In the supersymmetric case, 

there is a factorized S-matrix, 17 and the non-local 38 and 

local currents 1,39 are known to be conserved. 

For the CP(N-1) model, the purely bosonic model has no 

factorized S-matrix, 2 an anomaly in the non-local current, 32 

and possibly an anomaly in the local current. 2 For the 

supersymmetric case, there is a factorized S-matrix 35 and 
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the anomaly disappears from the non-local conservation 

law.36 HOWeVeK, for the local conservation law, we have not 

been able to prove that there is no anomaly. 

FOK the purely bosonic principal chiral models, 

O(N)xO(N) and SU(N)xSU(N), it is not known whether OK not 

there is a factorized S-matKiX. Goldschmidt and Witten have 

shown that the local conservation law survives quantization. 

Zaikov3' PUKpOKtS to have shown that the non-local 

conservation laws survive quantization. The supersymmetric 

version of these models is in much the same state4' except 

that our argument does not indicate whether OK not the local 

conservation laws are still conserved when the theory is 

quantized. There are some interesting open questions which 

remain to be resolved. Is it possible that the CP(N-1) 

model is, an example of a model where supersymmetry removes 

the anomaly, but in the O(N)xO(N) and SU(N)xSU(N) models the 

bosonic models have no anomaly whereas the supersymmetric 

models have one? We have certainly seen that the simple 

arguments for quantized local conservation laws in the 

bosonic models are not as useful fOK the supersymmetric 

models. Further study of the CP(N-1) model taking into 

account the extended supersymmetry, and of the 

supersymmetric principal chiral models should indicate 

whether OK not this type of analysis is misleading. 
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TABLE 1. 

Dimension Twist 

1 0 

1 

1 

3/2 0 

0 

1 

1 

512 0 

0 

0 

0 

1 

1 

m2+*‘4m) 

cu,~*~qo, - wl@*‘EJ24) 
(ff2~*‘~1~)+(~1~*‘~2~) 

07+@*‘~2$) +a9**v+$) 

(v+@**D,@)- t&G2$*‘v+@) 
(v+o*‘~19)+(81~*‘v+o) 
(v+~*.w,~)-(~,~*.v+~) 

(‘J+o*‘v+@) 
v+&2@*‘4) - Ld24*.v+8,w 

c7+8,@**fi2w + co,~*~v+#,~) 

(v+~2~*.~,~)-ca,~*.v+s2~) 
w+J2?20*4~@) + LQ**v+Q2w 

(9+9+$*432c3) + (~,~*~v+~+w 

(v+~2~*.v+~)+(v+~**v+~2~~ 

(v+v+tJ*+J2w - tQ2+**V+V++) 
u+Q2,*.v+e4- (v+@*.v+~,w 
(v+v+~**1o,tQ +(/Q1~*.v+v+~) 
w+v+o*-f9,w tlO,~*~v+v+~) 

(v+v+/920*‘~2w - (&2tJ**v+v+f92a) 

v+v+@*-v+$)+ (v+@**v+v++) 
(v+v+ti2$*a~2w + bQ2e**V+V+E2W 

A2,2 

S2,l 

A2,l 

S+,2 

A+,2 

s+,l 

A+,l 

S 
+,+ 

S+2,2 

A+2,2 

s+2,1 

A+2,1 

S++,2 

S+2,+ 

A++,2 

A +2,+ 

s++,l 

A++,1 

S++2,2 

S ++,+ 

A++2,2 
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0 

0 

1 

1 

712 0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

TABLE 1 (cont.) 

(v+v+4*-v+4)- (V+4*V+V+4) 

(v+~2,*av+Q2@) 

v+v+Q24**Q14)- b914**v+v+fi24) 

(v+v+Q24*+14) + tiO,4**v+v+&4) 

(v+v+v+~*.~2~)+(Q2~*.v+v+v+4) 

(v+V+Q24*'v+4)+(v+4*~~+v+~24) 

(v+v+~*.v+/J2~)+(v+Q2~*.v+v+$) 

(v+v+v++*.Q,$) - (Q2+*.V+v+V+w 

(v+v+B,$**v+4)- (v+4*'v+v+~4) 

(v+v+4*'v+Q2") - (v+Q24**V+V+4) 

v+v+v+4**P14) +(Q*-V+V+V+4) 

(v+v+v+4*-Q,4) - (Q~4*~v+v+v+4) 

A ++,+ 

A +2,+2 

S ++2,1 

A tt2,l 

S +++,2 

S tt2,t 

S ++,+2 - 

Attt,2 

A ++2,+ 

A ++,+2 

S ++t,l 

A+++,1 



Class 

(4) 

(3) (1) 

(2j2 

(2) w2 

(3/z) 2 (1) 

(U4 
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TABLE 2 

OpeKatoKs 

sttt2,1 

Btt2,2 B2,l' sit,+ B2,1: Att2,2 A2,1; 

A it,+ A2,l' At2,+2 A2,1; At+2,1 A2,2 

S+t,2 B+,1; S +2,+ st,1; A++,2 At,1; 

A+2,+ A+,1; St+,1 St,2' At+,1 A+,2 

S +,+ Bi2,l' Bt2,2 st2,1; A+2,2 A+2,1 

S 
+,+ A2,2 A2,1; Bt2,2 A2,2 A2,1; 

2 
A+2,2 A2,2 B2,1; B+2,1(A2,2) ; 

S 
+,2 A+,2 A2,1; St,2 A+,1 A2,2' At,2 '+,l A2,2 

(A2,2) , 3 A2 1 
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TABLE 3 

Class r:o 

(7'z) s+++,2i s++2 +; S++,+2 , 

(5/2)(l) A ++,2 A2,2; A+2,+A2,2 

(2)(3/2) S S+ 2; S+2 2 S+ 2; 
+9+ , t , 

A 
+2,2 A+,2 

(3/2)(1)2 S+,2 (A, 2)2 
f 

FERMILAR-Pub-81/72-THY 

T.1 

S +++, 1 

S 
++,2 S2,1; s+2 

9; 
S2,t; 

A 
++,2 AZ,li A+2,+ A2,1; 

A 
++,l A2,2 

s s+1;s+22s+li +s+ , 9 , 

A 
+2,zA+,1; 

S S 
+2,1 +,2; 

A A 
+2,1 +,2 

S 
+,2 A2,2 A2,1; A+,2A2,2S2,,; 

S 
+,l(A2,2) 

2 
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TABLE 4 

FERMILAB-Pub-f31/72-THY 

-1 
pg MT O(N) 

1 1 Tr(D,g-'D2g) 

3/2 0,l Tr(a+g-'Dag) 

091 Tr(g-'D2gD2g-'Dagf 

2 091 Tr(a+D2g-'Dag+a+D2gDag -1 ) 

0 Tr(a+g-'a+g) 

0 Tr(g-'a+gD,g-'D2g) 

1 Tr(g-'a+gD,g-'D2g-g-'a+gD2g-'D,g) 

1 Tdg-'a+gD,f-'D2g+g -'a+gD2g-'D,g) 

1 Tr(D2g-~'D2gD2g-'D,g) 

512 0 Tr(a+g-'a+D2g+a+ga+D2g-'1 

OS1 Tr(a~g-'Dag+a~gDag-') 

091 Tr(g-'a+ga+g-'Dag) 

0 Tdg-'D2gD2g-'a+D2g-gD2g-'D2ga+D2g-') 

0 Tr(D$-'D$D2g -'a+g) 

O,l Tr(g-'D2gD2g-'D2gD2g-'Dag) 

+ 

x 

x 

x 

x 

x 
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1 Tdg-'D,gD2g-'a+D2g-gD,&D2&+D2g-') 

+g-'D2gD,d3+D2.s-gD2g-'D,&$+D2g-') 

1 

1 

1 

1 Tr(Dlg-'D~D2g-'a+g+D~-'D2gD,g-'a+g, 

3 0 Tr(D2g-',P2g+D2ga~D2g-') 

0 -ct-(a+g-‘a$a+ga$-‘1 

712 0 

0 

Tr(a3f1D2g+a3gD g-'1 + + 2 

Tr(a+g-'a~D2g~+ga~D2g-') 

Tr(a+D2g-‘a~g+a+D~a~g-‘) 

Tr(a+D2f'a+gD2g-'D2g-a+&+D2gD2g-'D2g)+(g -$j' 1 

Tr(a+g-'a+ga+g-'D2g) 

Tr(D2g-'D$D$-'D$D2g-'a+g) 

TABLE 4 (cont.) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ x 

- x 

+ 

x 

+ 

+ 

+ 

+ 

+ 

+ 

l 

+ 
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1 

1 

1 

1 

1 

1 

1 

1 

1 

4 1 

1 

1 

1 

1 

1 

1 

TABLE 0 (cont.) 

Tr(a3g-'D g+a3gD g-'1 + 1 + 1 

-1 Tr(a;g-'D,gD,g-'D,g-afg-'D2gD2g-'D,g)+(g g ) 

TdD2g-'a+ga+D2g-'D,g-a+D2g-'a+gD2g-'D,g)+(g +g-'1 

-1 Tda+g-'a+D2gD2g-'D,g-D2g-'a+D,ga+g-'D,g,+(g +g ) 

Tr(a+D2g-'D2ga+g-'Dig-a+g-'D2ga+D2g-'D,g)+(g +g-') 

Tr(a+g-'a+gB+g-'D,g) 

Tr(D,g-'D2gD2g-'D2gD2g-'a+g+D2g-'D2gD2g-'D2gD,g-'a+g~ 

Tr(D2g-'D,gD2g-'D2gD2g-'a+g+D2g-'D2gD2g-'D,gD2g-'a+g) 

Tr(D2g-'D2gD,g-'D2gD2g-'a+g) 

Tr(D,g-'a;D,g+D,ga;D,g-1) 

Tr(D2g-'D2gafD2g-'D,g-afD2g-'D2gD2g-'D,g)+(g g-l) 

Tr(D2g-'a+ga;g-'D,g+azg-'a+gD2g-'D,g)+(g 9-l) 

Tr(D2g-'afga+g-'D,g+a+g-'$gD2g-'D,g)+(g g-l) 

Tr(a+g-'D2gafg-'D,g+azg-'D2ga+g-'D,g)+(g g-l) 

Tr(D2g-'a+D2ga+D2g-'D,g-a+D2g-'a+D2gD2g-'D,gMg g-l) 

Tr(a+g-'a+D2ga+g-1D,g+a+ga+D2g-la+gD,g-1) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

l 

+ 

+ 

+ 

?+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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1 

TABLE 4 (cont.) 

Tr(a+D2g-‘a+ga+g-‘D,g+a+g-‘a+ga+D2g-’D,g)+(g 8-l) + + 

Tr(D2g-'D2ga+D2g-'D2gD2g-'D,g)+(g +g-') + + 

Tr(D2g-‘a+D2gD2g-‘D2~D2g-‘D,~+D2~-’D2~D2~-’~~D2~D2~-‘D,~~ + + 

+(I3 -93 -1 1 

Tr(a+D2g-'D2gD2g-'D2gD2g-'D,g+D2g-'D2gD2g-'D2g~+D2g-'Dlg~ + + 

+(g +g -5 

Tr(a+g-'a+gD2g-'D2gD2g-'D,g-D2g-'D2gD2g-'a+ga+g-'D,g, + + 

Tr~a+g-'D2ga+g-'D2gD2g-'D,g-D2g-'D2ga+g-'D2ga+g-'D,g) + + 

Tr~~+g-'D2gD2g-'~+gD2g-'D,g-D2g-'~+gD2g-'D2g~+g-'D,g~ + + 

Tr(D$-',+ga+g-'D$D2g -‘D,g-D2g-‘D2ga+g-‘a+gD2g-‘D,g) c + 
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